O-N, S-N AND N-N EXCHANGE REACTIONS AT OLEFINIC CARBON ATOMS: FACILE SYNTHETIC METHOD FOR β-TRIFLUOROACETYLVINYLAMINES

Masaru Hojo,* Ryōichi Masuda, Etsuji Okada, Syūhei Sakaguchi, Hitoshi Narumiya and Katsushi Morimoto

Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan

Summary: β -Trifluoroacetylvinyl ethers 1 and sulfides 2 react easily with various amines at room temperature to give β -trifluoroacetylvinylamines 3 in excellent yields. This O-N and S-N exchange reaction can be extended to N-N exchange reaction.

Recently much attention has been paid to the development of new methodologies for the syntheses of many kinds of fluorine-containing heterocycles. These compounds are now widely recognized as important materials having interesting functionalities for use in medicinal and agricultural fields of science. 1-3 The chemistry and potential utility in organic syntheses of B-acylvinylamines are now well recognized and several synthetic methods of them have been described in the literature. $^{4-6}$ However, the synthesis of β -acylvinylamines bearing trifluoromethyl group, which are expected to be a useful building block for the synthesis of fluorine-containing heterocycles, has little been reported so far.⁷ During our investigations⁸ on the electrophilic substitutions at olefinic carbon atoms it was found that vinyl ethers react readily with trifluoroacetic anhydride to give the corresponding B-trifluoroacetylvinyl ethers in high yields. These trifluoroacetylated vinyl ethers would be versatile intermediates for the convenient synthesis of CF₂-containing β -acylvinylamines which are hardly obtainable by other routes.⁹ This situation prompted us to investigate the synthesis of the title compounds (3) by nucleophilic O-N exchange reaction of β -trifluoroacetylvinyl ethers (<u>1</u>) with various amines, together with the relevant S-N and N-N exchange reactions at the olefinic carbon atoms.

 β -Trifluoroacetylvinyl ethers 1a¹⁰ and 1b¹¹ were readily prepared by trifluoroacetylation of ethyl vinyl ether and acetone dimethyl acetal, respectively, in almost quantitative yields. On mixing the ethers 1a,b in acetonitrile with ammonia water (28%) at room temperature, there occurred the 0-N exchange reaction almost spontaneously as checked by ¹H-NMR spectroscopy and β -trifluoroacetylvinylamines 3a,k were obtained in yields over 90% by merely evapolation of the solvent. Similarly, 1 underwent this exchange with various primand sec-amines and the results are listed in Table 1. Interestingly, the reaction of 1a with a large excess of triethylamine at 80 °C gave 3j in 35% yield, probably formed by the exchange followed by deethylation from the intermediate quarternary ammonium ion.

R ¹ Y	R ³ R ⁴ NH	R ³ R ⁴ N	1,2	R ¹	R ²
R ² C=CHCOCF ₃	r.t., 2-5 h	_{R²})C=CHCOCF ₃	æ	Et	Н
1a,b Y=0	in MeCN	3a-r	p	Ме	Me
2a-c Y=S			ç	Ме	Ph

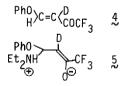
Table 1. O-N and S-N Exchange Reaction of 1 and 2 with Amines^a

Sub- strate ^b	R ³	R ⁴	Prod- uct ^C	Yield ^d (%)	Sub- strate ^b	R ³	R ⁴	Prod- uct ^C	Yield ^d (%)
1a	H	Н	3ja	93	1 <u>b</u>	i-Pr	Н	3m	99
1 <u>,a</u>	Ме	Н	3℃	99	1,b	t-Bu	Ĥ	3n	93
1 <u>a</u>	Et	Н	3 <u>c</u>	96	1,b	PhCH ₂	PhCH ₂	30	98
1 <u>a</u>	i-Pr	Н	3d	100	2a	н	Η	3 <u>a</u>	90
1 <u>a</u>	Ph	Н	3é	100	2a	Ме	Н	Зр	67
1 <u>a</u>	p-MeOC ₆ H ₄	Н	3 f	93	2a	Et	Et	<u>3</u> 1	100
1 <u>a</u>	p-N02C6H4	Н	3g	88	2b	Н	Н	3,k	56
1 <u>a</u>	Me	Me	3h	96	2 <u>b</u>	Me	Н	<u>3</u>]	76
1 <u>a</u>	Et	Et	3 <u>j</u> i	100	2Ь	PhCH ₂	PhCH ₂	30	68
1 <u>a</u>	-(CH ₂) ₄ -		3 <u>j</u>	100	2 <u>c</u>	Η	н	3p	88
1 <u>b</u>	H	н	3,k	93	2c	Me	н	3q	100
1 <u>b</u>	Me	Н	3J	92	2 <u>c</u>	Et	Et	<u>3r</u>	93

^a Aqueous solutions of ammonia (28%), methylamine (40%), ethylamine (70%) and dimethylamine (50%) were used.

^b 1a, trans isomer; 1b, c, either of E or Z isomer (stereochemistry is not determined yet);

2a-c, mixture of the two stereoisomers (the ratios are not fixed in all cases). 3a-g, cis isomer; 3h-j, trans isomer; 3k-n,p,q, Z isomer; 3o,r, E or Z isomer.


с

Yield of isolated products.

Attempted reaction of vinyl ether 4 labelled with deuterium with diethylamine gave 3i-B-d without essentially any loss of the deuterium. This result suggests that elimination of phenoxide from intermediate 5 generated by Michael type attack of diethylamine upon 4 is much faster than protonolysis leading to 6.

Likewise, β -trifluoroacetylvinyl sulfides 2a-c¹² underwent S-N exchange readily to give the corresponding β -acylvinylamines 3 in excellent yields and the results are shown in Table 1.¹³

This exchange reaction can be extended further to N-N exchange. Carbon-nitrogen bonds are difficult to be cleaved by nucleophiles such as amines and a little is known about nucleophilic N-N exchange reactions.¹⁴ However, in the present system this N-N exchange occurs very readily even at room temperature. For example, β -trifluoroacetylvinylamine <u>3</u>a reacts with dimethylamine at room temperature in acetonitrile as solvent to give 85% yield of dimethylamino derivative 3h within only 5 min. The amounts of reagent amines used are

Et₂N COCF₃

$$\begin{array}{ccc} R^{3}R^{4}N & & RR^{n} & \\ & & & \\ H & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Table 2. N-N Exchange Reaction of 3a,b,h with Amines

Sub-	Amine ^a	Molar	Time	Prod-	Yield ^C	
strate	(RR'NH)	Ratio ^b	(h)	uct	(%)	
<u>3a</u>	MeNH ₂	3	0.5	3p	100	
<u>3</u> a	i-PrNH2	1	0.5	3d	82	
3 <u>a</u>	PhNH ₂	1	0.5	3e	95	
<u>3</u> a	Me ₂ NH	3	5 min	3h	85	
3 <u>a</u>	Et ₂ NH	3	0.5	<u>3</u> i	100	
3 <u>a</u>	pyrrolidine	1	0.5	3j	93	
зb	NH ₃	4	4	-	(100)	
3,₽	pyrrolidine	3	0.5	3j	100	
3h	NH ₃	6	4	-	(100)	
3,h	pyrrolidine	3	0.5	3 <u>j</u>	100	

^a Aqueous solutions of ammonia (28%), methylamine (40%) and dimethylamine (50%) were used.

b [Amine]/[Substrate]

^C Yield of isolated products. Values in parentheses are the recovery of substrates.

not in large excess and usually 1-3 times molar excess over the substrates is enough. Easiness of this reaction seems to depend on the relative basicities of the leaving and entering amino groups; for example, $(CH_3)_2N$ group can not be replaced by NH_2 , but NH_2 can be replaced by $(CH_3)_2N$. These results are summarized in Table 2.

The stereochemistry of β -acylvinylamines 3 was confirmed by ¹H-NMR. The small magnitude of the coupling constant $J_{CH=CH}$ (7-8 Hz) and/or the much deshielded peak (8.7-12.4 ppm) of amino protons by hydrogen bonding between NH and C=O show the cis and Z configurations (3a-g, k-n, p, q). The large coupling constant $J_{CH=CH}$ (12 Hz) suggests the trans configuration (3h-j). The signal for β -H or α -CH₃ of 3o,r appeared as a single peak, showing presence of a single stereoisomer.

The present exchange reaction can be extended to use bifunctional nucleophiles and is applicable to the synthesis of various fluorine-containing heterocycles. Further investigations for synthetic utilization of β -acylvinylamines 3 are now in progress and the results will be published elsewhere in our forthcoming papers.

<u>O-N, S-N and N-N Exchange Reactions; Typical Procedure</u>: To a solution of β -acylvinyl ether 1a (1387.3 mg, 8.25 mmol) in MeCN (15 ml) was added 28% ammonia water (652.7 mg, 10.73 mmol). The mixture was stirred at room temperature for 4 h. Removal of the solvent under reduced pressure afforded 1067.2 mg (93% yield) of β -acylvinylamine 3g: bp 120 °C/9 torr (oven temperature); ¹H-NMR(δ ,CDCl₃): 9.80-8.70(br,1H),7.27(dt,1H,J=7,8 Hz),7.00-6.30

(br,1H),5.40(d,1H,J=7 Hz); IR (film,cm⁻¹): v_{NH} 3370,3210, $v_{C=0}$ 1660; Anal (%): Calcd. for $C_AH_AF_3NO$: C;34.54; H,2.90; F,40.98; N,10.07: Found: C,34.68; H,2.92; F,41.43; N,10.26.

References and Notes

- Filler, R., in: <u>Organofluorine Chemicals and Their Industrial Applications</u>, Banks, R. E. (ed.), Ellis Horwood. London, <u>1979</u>, p. 123.
- <u>Biomedicinal Aspect of Fluorine Chemistry</u>, Filler, R., Kobayashi, Y. (eds.), Kodansha & Elsevier Biomedical, Tokyo, <u>1982</u>, p.1.
- 3. Welch, J. T. Tetrahedron, 1987, 43, 3123.
- 4. Nishio, T., Kashima, C., Omote, Y. J. Synth. Org. Chem., Jpn., 1976, 34, 526.
- 5. Greenhill, J. V. Chem. Soc. Rev. 1977, 6, 277.
- 6. Cherif, S. E., René, L. Synthesis, 1988, 138, and references cited therein.
- 7. In connection with the present β-acylvinylamine synthesis, there is only one example for the formation of diethyl-β-trifluoroacetylvinylamine 3j (mp 12-3 °C, bp 97-8 °C/2 torr, yield; 35%) on treatment of triethylamine with trifluoroacetyl chloride: Platoshkin, A. M., Cheburkov, Yu. A., Knunyants, I. L. <u>Izv. Akad. Nauk SSSR, Ser. Khim.</u> <u>1969</u>, 112.
- Hojo, M., Masuda, R., Okada, E. <u>Tetrahedron Lett</u>. <u>1986</u>, <u>27</u>, 353 and references cited therein.
- 9. As an alternative synthetic route for β -trifluoroacetylvinylamines 3 direct trifluoroacetylation of the corresponding enamines may be conceivable. However, this method is much inferior to the present one because of very low yields in both the enamine formation^{15, 16} (condensation of aldehydes with amines) and the subsequent trifluoroacetylation.¹⁷
- 10. Hojo, M., Masuda, R., Kokuryo, Y., Shioda, H., Matsuo, S. <u>Chem. Lett</u>. <u>1976</u>, 499.
- 11. Hojo, M., Masuda, R., Okada, E. Synthesis, 1986, 1013.
- 12. Hojo, M., Masuda, R., Kamitori, Y. Tetrahedron Lett. 1976, 17, 1009.
- This work was reported partly at the ACS/CSJ Chemical Congress, Honolulu, Apr., 1979 (Abstract paper, No. 344).
- 14. There are a few examples for N-N exchange reaction at olefinic and aromatic carbon atoms using imidazole as a good leaving group: Kashima, C., Tajima, T., Higuchi, C., Omote, Y. J. Heterocyclic Chem. 1984, 21, 345; de Rossi, R. H., Nűnez, A. J. Org. Chem. 1984, 49, 3978, respectively. Recently we reported that aromatic nucleophilic N-N exchange reaction of N,N-dimethyl-2,4-bistrifluoroacetyl-1-naphthylamine with various amines proceeds easily under mild conditions to give the corresponding 2,4-bistrifluoroacetyl-1-naphthylamines in excellent yields: Hojo, M., Masuda, R., Okada, E. Tetrahedron Lett, 1987, 28, 6199.
- 15. Nomura, Y. J. Synth. Org. Chem., Jpn. 1961, 19, 801.
- Enamines: Synthesis, Structure, and Reactions, Cook, A. G. (ed.), Marcel Dekker, New York, <u>1969</u>, p. 55.
- 17. Hojo, M., Masuda, R., Okada, E. unpublished work.

(Received in Japan 22 June 1989)